关键词 |
巢湖新型超塑性镁合金,新型超塑性镁合金,巢湖新型超塑性镁合金,销售新型超塑性镁合金 |
面向地区 |
Ca可起到与稀土元素相近的作用,降低c/a比值、弱化织构、细化晶粒、促进非基面滑移开启。通过高速挤压(24 m/min),Mg-1Al-0.3Ca-0.5Mn合金不仅可保持较高的屈服强度(~287 MPa),还具有~20%的高延伸率。基于基面-柱面位错交滑移不但可以加速峰时效,还可以显著提升塑性。Mn的加入可降低柱面滑移CRSS,对塑性提升产生有利作用,Mg-1Mn合金具有~39%的高延伸率。Li的加入同样可提升镁合金塑性,促使基轴由基面取向旋转至横向(TD)。随Li含量由5%升高至11%,Mg–xLi–3Al–1Sn–0.4Mn合金延伸率由~16%提升至~35%,归因于晶格类型由密排六方转变为体心立方且基面织构有所弱化。综上所述,多元合金化设计将为新型高塑性镁合金的发展开辟新道路。
通常,合金化可起到强化基面滑移、激活非基面滑移、加速交滑移、弱化基面织构及细化晶粒等作用,从而减少基面与非基面滑移间CRSS 差值,提升镁合金塑性。然而,对于大多数镁合金而言,仍难以实现强度和塑性的同步提升。为了获得高强塑性镁合金,一方面可通过巧妙的合金成分设计结合加工工艺,充分发挥溶质原子合金化作用。例如,提升凝固冷却速度或采用压力成形促进过饱和固溶体形成,过饱和溶质原子不仅可产生额外的固溶强化作用以提高强度,还可以强化软变形模式(基面滑移或孪生)、促进非基面滑移开启以提高塑性。此外,采用新型加工工艺,通过巧妙设计并调控镁合金微观组织,亦可实现强塑性同时提升。近期研究发现引入异构/混晶、梯度/层状异质结构、形成高密度纳米析出相/团簇和纳米孪晶是实现金属结构材料(包含镁及其合金)强塑性同步提升行之有效的策略。总之,充分发挥元素合金化作用并引入异构组织,有望为发展高强塑镁合金及其应用开辟新道路。
镁(Mg)合金由于其固有的低密度和高比强度,是有前途的轻质结构材料,特别是在交通运输和航空航天领域。大多数高强度镁合金在室温下表现出较差的成形性和延展性,这限制了它们的广泛应用。通过适当的合金化设计和/或精细的微观结构控制,一些新开发的镁合金包括稀土 (RE) 和不含稀土的镁合金,在不显著降低强度的情况下表现出增强的延展性。本文为了找出其中的关键原因,从合金化设计策略和加工技术的微观结构控制等方面回顾了近期关于韧性镁合金的研究。在这篇综述中,本文从合金化设计策略和通过加工技术进行的微观结构控制方面回顾了具有增强延展性的镁合金的新发展。它可以通过适当的合金化设计与智能微结构控制相结合,为制造具有增强的成形性和延展性的镁合金提供见解。
————— 认证资质 —————